Darcy's Law: \[\vec{q}_v = -K \nabla h \]

HYDRAULIC CONDUCTIVITY, \(K \) m/s

\[K = k \rho g / \mu \]

= kg/ν units of velocity

Proportionality constant in Darcy's Law

Property of both fluid and medium

see D&S, p. 62
HYDRAULIC POTENTIAL (Φ): energy/unit mass

\[\Phi = g h = g z + P/\rho_w \]

Consider incompressible fluid element

@ elevation \(z_i = 0 \) pressure \(P_i \), \(\rho_i \) and velocity \(v = 0 \)

Move to new position \(z, P, \rho, v \)

Energy difference: lift mass + accelerate + compress (= \(\int VdP \))

\[= mg(z - z_i) + \frac{mv^2}{2} + m \int \frac{V}{m} dP \]
latter term = \(m \int (1/\rho)dP \)

Energy/unit mass \(\Phi = g z + \frac{v^2}{2} + \int (1/\rho)dP \)

For incompressible fluid (\(\rho = \text{const} \)) & slow flow (\(v^2/2 \rightarrow 0 \)), \(z_i=0, \ P_i = 0 \)

Energy/unit mass: \(\Phi = g z + \frac{P}{\rho} = g h \)

Force/unit mass = \(\nabla \Phi = g - \nabla P/\rho \)

Force/unit weight = \(\nabla h = 1 - \nabla P/\rho g \)
Rewrite Darcy's Law:

\[\vec{q}_m = \rho \vec{q}_v = \frac{k \rho}{\nu} \left[g - \frac{\nabla P}{\rho} \right] \]

\[= \frac{k \rho}{\nu} \text{[force/unit mass]} \]

\[\vec{q}_m \equiv \text{Fluid flux mass vector (g/cm}^2\text{-sec)} \]
\[\propto k \equiv \text{rock (matrix) permeability (cm}^2\text{)} \]
\[\propto \rho \equiv \text{fluid density (g/cm}^3\text{)} \]
\[\propto [.....] \equiv \text{Force/unit mass acting on fluid element} \]
\[\propto 1/\nu \]

where \(\nu \equiv \text{Kinematic Viscosity} \)
\[= \frac{\mu}{\rho} \text{ cm}^2/\text{sec} \]
Rewrite Darcy's Law: Hubbert (1940; J. Geol. 48, p. 785-944)

\[\vec{q}_v = \frac{k}{\rho \nu} [\rho g - \nabla P] \]

\[= \frac{k}{\rho \nu} [\text{force/unit vol}] \]

\[\vec{q}_v \equiv \text{Fluid volumetric flux vector (cm}^3/\text{cm}^2\text{-sec)} = q_m/\rho \]
\[\propto \text{ k } \equiv \text{rock (matrix) permeability (cm}^2\) \]
\[\propto [.....] \equiv \text{Force/unit vol. acting on fluid element} \]
\[\propto 1/\nu \]

where \(\nu \equiv \text{Kinematic Viscosity} \]
\[= \frac{\mu}{\rho} \text{ cm}^2/\text{sec} \]
Rewrite Darcy's Law:

\[\vec{q}_v = \frac{k}{\rho v} [\rho g - \nabla P] \]

\[= \frac{k}{\rho v} [\rho g \nabla h] \]

\[= \frac{kg}{v} \nabla h \]

\[= K \nabla h \]
STATIC FLUID (NO FLOW)

\[\vec{q}_m = \frac{k\rho}{\nu} \left[\frac{g - \nabla P}{\rho} \right] \]
STATIC FLUID (NO FLOW)

\[q_m = \frac{k \rho}{\nu} \left[g - \frac{\nabla P}{\rho} \right] \]

Force/unit mass = 0 for \(q_m = 0 \)

\[\frac{\partial P}{\partial z} = \rho g \quad \frac{\partial P}{\partial x} = 0 \quad \frac{\partial P}{\partial y} = 0 \]

Converse:
Horizontal pressure gradients require fluid flow
Darcy's Law: Isotropic Media: \(\vec{q} = -K \nabla h \)
OK only if \(K_x = K_y = K_z \)

Darcy's Law: Anisotropic Media
\(K, k \) are tensors

Direction of fluid flow need not coincide with the gradient in hydraulic head
Darcy's Law: Isotropic Media: \(\mathbf{q} = - \mathbf{K} \nabla h \)

OK only if \(K_x = K_y = K_z \)

Darcy's Law: Anisotropic Media

\(\mathbf{K} \) is a tensor

Simplest case (orthorhombic?)

where principal directions of anisotropy coincide with \(x, y, z \)

\[
\mathbf{q} = - \begin{bmatrix} K_{xx} & 0 & 0 \\ 0 & K_{yy} & 0 \\ 0 & 0 & K_{zz} \end{bmatrix} \begin{pmatrix} \hat{i} \frac{\partial h}{\partial x} \\ \hat{j} \frac{\partial h}{\partial y} \\ \hat{k} \frac{\partial h}{\partial z} \end{pmatrix}
\]

Thus

\[
\mathbf{q}_x = - K_{xx} \frac{\partial h}{\partial x} \hat{i} \quad \mathbf{q}_y = - K_{yy} \frac{\partial h}{\partial y} \hat{j} \quad \mathbf{q}_z = - K_{zz} \frac{\partial h}{\partial z} \hat{k}
\]
General case: Symmetrical tensor

\[K_{xy} = K_{yx} \quad K_{zx} = K_{xz} \quad K_{yz} = K_{zy} \]

\[\mathbf{q} = - \begin{bmatrix} K_{xx} & K_{xy} & K_{xz} \\ K_{yx} & K_{yy} & K_{yz} \\ K_{zx} & K_{zy} & K_{zz} \end{bmatrix} \begin{pmatrix} \frac{\partial h}{\partial x} \\ \frac{\partial h}{\partial y} \\ \frac{\partial h}{\partial z} \end{pmatrix} \]

\[q_x = - K_{xx} \frac{\partial h}{\partial x} - K_{xy} \frac{\partial h}{\partial y} - K_{xz} \frac{\partial h}{\partial z} \]

\[q_y = - K_{yx} \frac{\partial h}{\partial x} - K_{yy} \frac{\partial h}{\partial y} - K_{yz} \frac{\partial h}{\partial z} \]

\[q_z = - K_{zx} \frac{\partial h}{\partial x} - K_{zy} \frac{\partial h}{\partial y} - K_{zz} \frac{\partial h}{\partial z} \]
Relevant Physical Properties for Darcy’s Law

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic conductivity</td>
<td>K</td>
<td>kg/ν cm/s</td>
</tr>
<tr>
<td>Density</td>
<td>ρ</td>
<td>g/cm3</td>
</tr>
<tr>
<td>Kinematic Viscosity</td>
<td>ν</td>
<td>cm2/sec</td>
</tr>
<tr>
<td>Dynamic Viscosity</td>
<td>μ</td>
<td>poise</td>
</tr>
<tr>
<td>Porosity</td>
<td>ϕ</td>
<td>dimensionless</td>
</tr>
<tr>
<td>Permeability</td>
<td>k</td>
<td>cm2</td>
</tr>
</tbody>
</table>

“Darcy” Version

$$
\vec{q}_v = - K \nabla h
$$

Hubbert Version

$$
\vec{q}_v = \frac{k}{\rho \nu} \left[\rho g - \nabla P \right]
$$

$$
\vec{q}_m = \rho \vec{q}_v
$$
Relevant Physical Properties for Darcy’s Law

Hydraulic conductivity (K) \(\text{cm/s} \)

Units of velocity
Proportionality constant in Darcy’s Law
Property of both fluid and medium

\[\vec{q}_v = -K \nabla h \]

\[\vec{q}_v = \frac{kg}{\nu} \left[1 - \frac{\nabla P}{\rho g} \right] \]

\[\vec{q}_m = \rho \vec{q}_v \]

\(\Rightarrow \) \(K = \frac{\text{kg}}{\text{\nu}} \)

and where \(\nabla h = 1 - \nabla P/\rho g \)
DENSITY \((\rho) \quad \text{g/cm}^3\)

Fluid property

Specific weight (weight density) \(\gamma = \rho \ g\)

\(\rho = f(T,P)\)

\[
\rho_{T,P} \equiv \rho_o \left\{1 - \alpha (T-T_o) + \beta (P-P_o)\right\} \text{ for small } \alpha, \beta
\]

where

Thermal expansivity

\[
\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_P = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_P \quad \text{because} \quad \frac{d\rho}{\rho} = -\frac{dV}{V}
\]

Isothermal Compressibility

\[
\beta_T \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P}\right)_T
\]
DYNAMIC VISCOSITY μ Fluid property

Geo. Stokes Law:

$$\frac{4\pi r^3}{3} (\rho_s - \rho_f) g = 6\pi r \mu u$$

Gravitational Force = Frictional Force

Units of μ:

- poise; 1 P = 0.1 N sec/m2
- $= 1$ dyne sec/cm2

Water 0.01 poise (1 centipoise)
DYNAMIC VISCOSITY \(\mu \)
Fluid property

A measure of the rate of strain in an imperfectly elastic material subjected to a distortional stress.

For simple shear \(\tau = \mu \partial u/\partial y \)
Newtonian fluid

Units (poise; 1 P = 0.1 N sec/m\(^2\) = 1 dyne sec/cm\(^2\))
Water 0.01 poise (1 centipoise)

KINEMATIC VISCOSITY \(\nu \)
Fluid property

\[\nu = \frac{\mu}{\rho} \text{ m}^2/\text{sec} \text{ or cm}^2/\text{sec} \]

Water: \(10^{-6} \text{ m}^2/\text{sec} = 10^{-2} \text{ cm}^2/\text{sec} \)
Basaltic Magma 0.1 m\(^2\)/sec
Asphalt @ 20°C
or granitic magma \(10^2 \text{ m}^2/\text{sec} \)
Mantle \(10^{16} \text{ m}^2/\text{sec} \)
see Tritton p. 5; Elder p. 221)
Darcy's Law:

\[\vec{q}_v = \frac{kg}{\nu} \left[1 - \frac{\nabla P}{g \rho} \right] = -\frac{kg}{\nu} [\nabla h] = -K \nabla h \]

where:

\(\vec{q}_v \equiv \text{Darcy Velocity, Specific Discharge} \)
\(\text{or Fluid volumetric flux vector (cm/sec)} \)

\(k \equiv \text{permeability (cm}^2\text{)} \)

\(K = k(g/\nu) \equiv \text{hydraulic conductivity (cm/sec)} \)

\(\nu \equiv \text{Kinematic viscosity, cm}^2/\text{sec} \)
POROSITY \((\phi, \text{ or } n) \) \hspace{1cm} \text{dimensionless} \hspace{1cm} \text{Rock property}

Ratio of void space to total volume of material

\[\phi = \frac{V_v}{V_T} \]

Dictates how much water a saturated material can contain

Large Range: \(<0.1\% \text{ to } >75\%\)
Strange behaviors

Important influence on bulk properties of material
\(\text{e.g., bulk r, heat capacity, seismic velocity} \ldots \)

Difference between Darcy velocity and average microscopic velocity

Decreases with depth: Shales \(\phi = \phi_o e^{-cz} \) exponential

Sandstones: \(\phi = \phi_o - cz \) linear
Porosity, %

Non-uniform grain sizes

FCC 26%

BCC 32%

Simple cubic 47.6%

Gravel
Sand
Silt & Clay

Shale Sandstone Siltstone

Limestone & Dolostone karstic

Fractured crystalline rocks Basalt

Pumice
PERMEABILITY \((k) \) \(\text{cm}^2 \)

Measure of the ability of a material to transmit fluid under a hydrostatic gradient

Differences with Porosity?
PERMEABILITY (k) cm^2

Measure of the ability of a material to transmit fluid under a hydrostatic gradient

Differences with Porosity?

Different Units

Styrofoam cup: High ϕ, Low k

Uniform spheres: $\phi \neq f(\text{dia})$; $k \sim \text{dia}^2$
PERMEABILITY \((k) \) cm\(^2\)

Measure of the ability of a material to transmit fluid under a hydrostatic gradient

Most important rock parameter pertinent to fluid flow

Relates to the presence of fractures and interconnected voids

\[
1 \text{ darcy} = 0.987 \times 10^{-8} \text{ cm}^2 = 0.987 \times 10^{-12} \text{ m}^2
\]

(e.g., sandstone)

Approximate relation between \(K \) and \(k \) (for cool water):

\[
K_{\text{m/s}} \approx 10^7 \, k \text{ m}^2 = 10^3 \, k \text{ cm}^2 = 10^{-5} \, k_{\text{darcy}}
\]

\[
K_{\text{cm/s}} \approx 10^5 \, k \text{ cm}^2 = 10^{-3} \, k_{\text{darcy}}
\]

\[
K_{\text{ft/y}} \approx 10^{11} \, k \text{ cm}^2
\]
Permeability, cm2
GEOLOGIC REALITIES OF PERMEABILITY \((k) \)

Huge Range in common geologic materials \(> 10^{13} \times \)

Decreases super-exponentially with depth

\[k = C d^2 \] for granular material,
where \(d = \) grain diameter, \(C \) is complicated parameter

\[k = a^3/12L \] for parallel fractures of aperture width “a” and spacing \(L \)

\(k \) is *dynamic* (dissolution/precipitation, cementation,
thermal or mechanical fracturing; plastic deformation)

\(K \) is very low in deforming rocks as cracks seal (marbles, halite)

Scale dependence:

\[k_{\text{regional}} \geq k_{\text{most permeable parts of drill holes}} \gg k_{\text{lab; small scale}} \]